
1. Python 3

2. Contents
1. Python 3
2. Contents
3. Variables, expressions, and Statements

3.1. Types
3.2. Variables

3.2.1. Python reserved keywords
3.3. Operators and operands

3.3.1. Order of operations
3.4. String operations

3.4.1. Concatenation
3.4.2. Multiplication

3.5. User Input
3.6. Glossary

4. Conditional Execution
4.1. Boolean expressions
4.2. Conditional execution
4.3. Catching exceptions using try and except
4.4. Short-circuit evaluation of logical expressions
4.5. Glossary

5. Functions
5.1. Built-in Functions
5.2. Math functions
5.3. Random numbers
5.4. Type conversion
5.5. New Functions

5.5.1. Default arguments
5.5.2. Variable-length Arguments

5.6. Glossary
6. Iteration

6.1. The while statement
6.2. Continue and Break
6.3. Loops

6.3.1. Range()
6.3.1.1. else

6.4. Glossary
7. Strings

7.1. Assessing characters
7.2. Length
7.3. Traversal
7.4. String slices

7.4.1. Reverse a string

7.5. Strings are immutable
7.6. The in operator
7.7. String comparison
7.8. String methods
7.9. Parsing strings
7.10. Format Operator
7.11. Glossary

8. Files
8.1. Opening files modes
8.2. The file object attributes
8.3. Opening files
8.4. Text files and lines
8.5. Reading files
8.6. Searching through a file
8.7. Writing files
8.8. Glossary

9. Lists
9.1. Lists are mutable
9.2. Dims as variables
9.3. in operator
9.4. Traversing a list

9.4.1. next() iteration
9.5. List operations

9.5.1. +
9.5.2. *

9.6. List slices
9.7. List methods

9.7.1. append()
9.7.2. extends()
9.7.3. sort()
9.7.4. pop()
9.7.5. del
9.7.6. remove()

9.8. Lists and functions
9.9. Lists and strings
9.10. Objects and values

9.10.1. is - refer to the dame object, checks for Identity
9.10.2. Aliasing

9.11. List arguments
9.11.1. Modifies the list
9.11.2. Creates new list

9.12. Glossary
10. Dictionaries

10.1. Create
10.2. Add
10.3. Create pre-populated

10.4. Look up
10.5. Number of pairs
10.6. in check if a key is in the dictionary (does not work for value)
10.7. Check if value is in the dictionary
10.8. Looping and dictonaries
10.9. Glossary

11. Tuples
11.1. Comparing Tuples
11.2. Tuple Assignment
11.3. Dictionaries and tuples
11.4. Multiple assignment with dictionaries
11.5. Using tuples as keys in dictionaries
11.6. Glossary

12. Regular Expressions
12.1. search()
12.2. Special characters
12.3. Extracting data using regular expressions
12.4. Combining searching and extracting
12.5. Combining searching and extracting
12.6. Glossary

13. Networked Programs
13.1. The world's simplest web browser
13.2. Retrieving an image over HTTP
13.3. Retrieving web pages with urllib
13.4. Reading binary files using urllib
13.5. Parsing HTML and scraping the web
13.6. Parsing HTML using regular expressions

14. Using Web Services
15. Object-oriented programming
16. Using Databases and SQL
17. Visualising data
18. Reference

3. Variables, expressions, and Statements

3.1. Types

>>> type('hello world')

<class 'str'>
>>> type(17)

<class 'int'>
>>> type(1.3)

<class 'float'>

>>> type(True)

<class 'bool'>

Will output the class of the variable

>>> print(1,000,000)

1 0 0

, in print are interpreted as spaces

3.2. Variables

text = 'Hello friend'

number = 19

pi = 3.14

isEmpyt = True

Variables can:

can contain

letters
numbers

Cannon start with numbers

Start variables with lowercase letters

3.2.1. Python reserved keywords

and del from None True

as elif global nonlocal while

assert else if not while

break except import or with

class False in pass yield

continue finally is raise async

def for lambda return await

3.3. Operators and operands

operators - are specific symbols that represent computations

operands - are the values the operator is applied to

Operators Action Example

+ Addition 20+30

- Subtraction 4-1

* Multiplication 2*2

/ Division (can produce floating point) 10/5

// Division (floored) 11//2

% Modulus - remainder of the division of left operand by the right 5 % 2

** Exponentiation 2**4

3.3.1. Order of operations

Using acronym PEMDAS, from highest to lowest

Parentheses
Exponentiation
Multiplication and Division, have the same precedence
Addition and Subtraction, which also have the same precedence
Operators with the same precedence are evaluated from left to right

3.4. String operations

3.4.1. Concatenation

+ can be used to concatenate two strings together

>>> first = '100'

>>> second = '500'

>>> print(first+second)

100500

3.4.2. Multiplication

* can be used to repeat string a given number of times.

>>> first = 'Test '

>>> second = 3

>>> print(first * second)

Test Test Test

3.5. User Input

>>> user_input = input("Give me your name?\n")

Is you are expecting an integer you are going to need to convert string to int

>>> int(string_val)

12

3.6. Glossary

assignment A statement that assigns a value to a variable.
concatenate To join two operands end to end.
commen Information in a program that is meant for other programmers (or anyone reading the source

code) and has no effect on the execution of the program.
evaluate To simplify an expression by performing the operations in order to yield a single value.
expression A combination of variables, operators, and values that represents a single result value.
floating point A type that represents numbers with fractional parts.
 integer A type that represents

whole numbers.
keyword A reserved word that is used by the compiler to parse a program; you cannot use keywords like

if, def, and while as variable names.
mnemonic A memory aid. We often give variables mnemonic names to help us remember what is stored

in the variable.
modulus operator An operator, denoted with a percent sign (%), that works on integers and yields the

remainder when one number is divided by another.
operand One of the values on which an operator operates.
operator A special symbol that represents a simple computation like addition, multiplication, or string

concatenation.
rules of precedence The set of rules governing the order in which expressions involving multiple

operators and operands are evaluated.
statement A section of code that represents a command or action. So far, the statements we have seen

are assignments and print expression statement
string A type that represents sequences of characters.
type A category of values. The types we have seen so far are integers (type int), floating-point numbers

(type float), and strings (type str).
value One of the basic units of data, like a number or string, that a program manipulates.
variable A name that refers to a value.

4. Conditional Execution

4.1. Boolean expressions

Comparison operators Action

x == y Equality

x != y Inequality

x > y Greater than

x < y Less than

x >= y Greater than or equal

x <= y Less than or equal

x is y x is the same as y

x is not y x is not the same as y

Logical operators

and

or

4.2. Conditional execution

if x < 3:

 print('small')

elif x == 3:

 print('same')

else:

 print('big')

4.3. Catching exceptions using try and except

inp = input('Enter Fahrenheit Temp')

try:

 fahr = float(inp)

 cel = (fahr - 32.0) * 5.0 / 9.0

 print(cel)

except ValueError as err:

 print('wrong value type {0}'.format(err))

except:

 print('something else')

4.4. Short-circuit evaluation of logical expressions

Logical expressions are evaluated from left to right. if in and the first part of the condition evaluates to False
then there is no reason to evaluate the rest, you can return zero.

>>> x = 6

>>> y = 0

>>> x >= 2 and y != 0 and (x/y) > 2

4.5. Glossary

body The sequence of statements within a compound statement.
boolean expression An expression whose value is either True or False.
branch One of the alternative sequences of statements in a conditional
chained conditiona l A conditional statement with a series of alternative branches.
comparison operator One of the operators that compares its operands: ==, !=,>, <, >=, and <=.
conditional statement A statement that controls the flow of execution depending on some condition.
condition The boolean expression in a conditional statement that determines which branch is executed.
compound statement A statement that consists of a header and a body. The header ends with a colon (:).

The body is indented relative to the header.
guardian pattern Where we construct a logical expression with additional comparisons to take

advantage of the short-circuit behavior.
logical operator One of the operators that combines boolean expressions: and, or, and not.
nested conditional A conditional statement that appears in one of the branches of another conditional

statement.
traceback A list of the functions that are executing, printed when an exception occurs.
short circuit When Python is part-way through evaluating a logical expression and stops the

evaluation because Python knows the final value for the expression without needing to evaluate the rest
of the expression.

5. Functions

5.1. Built-in Functions

Built-in Functions

abs() delattr() hash() memoryview() set()

all() dict() help() min() setattr()

any() dir() hex() next() slice()

ascii() divmod() id() object() sorted()

bin() enumerate() input() oct() staticmethod()

bool() eval() int() open() str()

breakpoint() exec() isinstance() ord() sum()

bytearray() filter() issubclass() pow() super()

bytes() float() iter() print() tuple()

callable() format() len() property() type()

chr() frozenset() list() range() vars()

classmethod() getattr() locals() repr() zip()

compile() globals() map() reversed() __import__()

complex() hasattr() max() round()

5.2. Math functions

To use math module

import math

5.3. Random numbers

import random

x = random.random()# returns float between 0.0 and 1.0 (including 0.0 but not 1.0)

random.randint(low, high)

t = [1, 2, 3]

random.choice(t)

https://docs.python.org/3/library/functions.html#abs
https://docs.python.org/3/library/functions.html#delattr
https://docs.python.org/3/library/functions.html#hash
https://docs.python.org/3/library/functions.html#func-memoryview
https://docs.python.org/3/library/functions.html#func-set
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/library/functions.html#func-dict
https://docs.python.org/3/library/functions.html#help
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#setattr
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/functions.html#dir
https://docs.python.org/3/library/functions.html#hex
https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#ascii
https://docs.python.org/3/library/functions.html#divmod
https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#bin
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#oct
https://docs.python.org/3/library/functions.html#staticmethod
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#eval
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#func-str
https://docs.python.org/3/library/functions.html#breakpoint
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/functions.html#ord
https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/functions.html#func-bytearray
https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/functions.html#issubclass
https://docs.python.org/3/library/functions.html#pow
https://docs.python.org/3/library/functions.html#super
https://docs.python.org/3/library/functions.html#func-bytes
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#func-tuple
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#format
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#chr
https://docs.python.org/3/library/functions.html#func-frozenset
https://docs.python.org/3/library/functions.html#func-list
https://docs.python.org/3/library/functions.html#func-range
https://docs.python.org/3/library/functions.html#vars
https://docs.python.org/3/library/functions.html#classmethod
https://docs.python.org/3/library/functions.html#getattr
https://docs.python.org/3/library/functions.html#locals
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#globals
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#reversed
https://docs.python.org/3/library/functions.html#__import__
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#hasattr
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3.0/library/math.html

5.4. Type conversion

>>> int('32')

32

>>> int(3.9999)

3

>>> int('Hello')

ValueError: invalid literal for int() with base 10: 'Hello'

>>> float(32)

32.0

>>> float('3.123')

3.123

>>> str(32)

'32'

>>> str(3.123)

'3.123'

>>> bool('abc')

True

>>> bool('')

False

>>> ord('a')

97

>>> ord('€')

8364

>>> chr(92)

'a'

>>> chr(8364)

'€'

5.5. New Functions

def sum(a, b):

 added = a + b

 return added

5.5.1. Default arguments

def sum(a=4, b=2)

 added = a + b

 return added

def func(a=1, b) is not allowed because calling func(5) will set a but will leave b with not value

5.5.2. Variable-length Arguments

if you don't know the number of arguments needed in the function

* - tuple
** - dictionary

def display(*name, **address):

 for items in name:

 print (items)

 for items in address.items():

 print(items)

display(''john','Mary','Nina',John='LA',Mary='NY',Nina='DC'')

output

John

Mary

Nina

('John', 'LA')

('Mary', 'NY')

('Nina', 'DC')

5.6. Glossary

algorithm A general process for solving a category of problems.
argument A value provided to a function when the function is called. This value is assigned to the

corresponding parameter in the function.
body The sequence of statements inside a function definition.
composition Using an expression as part of a larger expression, or a statement as part of a larger

statement.
deterministic Pertaining to a program that does the same thing each time it runs, given the same

inputs.
dot notation The syntax for calling a function in another module by specifying the module name

followed by a dot (period) and the function name.
flow of execution The order in which statements are executed during a program run.
fruitful function A function that returns a value.

function A named sequence of statements that performs some useful operation. Functions may or may
not take arguments and may or may not produce a result.
function call A statement that executes a function. It consists of the function name followed by an

argument list.
function definition A statement that creates a new function, specifying its name, parameters, and the

statements it executes.
function object A value created by a function definition. The name of the function is a variable that

refers to a function object.
header The first line of a function definition.
import statement A statement that reads a module file and creates a module object.
module object A value created by an import statement that provides access to the data and code

defined in a module.
parameter A name used inside a function to refer to the value passed as an argument.
pseudorandom Pertaining to a sequence of numbers that appear to be random, but are generated by a

deterministic program.
return value The result of a function. If a function call is used as an expression, the return value is the

value of the expression.
void function A function that does not return a value.

6. Iteration

6.1. The while statement

n = 5

while n > 0:

 print(n)

 n = n - 1

6.2. Continue and Break

while True:

 line = input('> ')

 if line[0] == '#':

 continue

 if line == 'done':

 break

 print(line)

print('Done!')

6.3. Loops

friends = ['Josh', 'Glenn', 'Sally']

for friend in friends:

 print('Hello ', friend)

print('Done')

6.3.1. Range()

for x in range(6):

 print(x)

range(6) is from 0 to 5

for x in range(2,6)

 print(x)

range(2,6) is from 2 to 5

for x in range(2,30,3)

 print(x)

range(2,30,3) is from 2 to 29 but with increments of 3

6.3.1.1. else

for x in range (6):

 print(x)

else:

 print('Finally finished!')

6.4. Glossary

accumulator A variable used in a loop to add up or accumulate a result.
counter A variable used in a loop to count the number of times something happened. We initialize a

counter to zero and then increment the counter each time we want to “count” something.
decrement An update that decreases the value of a variable.
initialize An assignment that gives an initial value to a variable that will be updated.
increment An update that increases the value of a variable (often by one).
infinite loop A loop in which the terminating condition is never satisfied or for which there is no

terminating condition.
iteration Repeated execution of a set of statements using either a function that calls itself or a loop.

7. Strings

7.1. Assessing characters

>>> fruit = 'banana'

>>> letter = fruit[0]

7.2. Length

>>> fruit = 'banana'

>>> len(fruit)

6

7.3. Traversal

Can use index or

for char in fruit:

 print(char)

7.4. String slices

>>> s = 'Monty Python'

>>> print(s[0:5])

Monty

>>> print(s[6:12])

Python

>>> fruit = 'banana'

>>> fruit[:3]

'ban'

>>> fruit[3:]

'ana'

>>> fruit = 'banana'

>>> fruit[3:3]

''

7.4.1. Reverse a string

>>> a = "!dlrow olleH"

>>> backward = a[::-1]

>>> print(backward)

Hello world!

7.5. Strings are immutable

Cannon change a character as indexes.

>>> greeting = 'Hello, world!'

>>> greeting[0] = 'J'

TypeError: 'str' object does not support item assignment

7.6. The in operator

Boolean operator

>>> 'a' in 'banana'

True

>>> 'seed' in 'banana'

False

7.7. String comparison

if word == 'banana':

 print('All right, bananas')

elif word < 'banana':

 print('Your word comes before banana')

elif wor > 'banana':

 print('Your word comes after banana')

7.8. String methods

Can use dir(obj) to find out methods for the object, or just is this site

https://docs.python.org/3/library/stdtypes.html#string-methods

>>> stuff = 'Hello World'

>>> type(stuff)

<class 'str'>
>>> dir(stuff)

['capitalize', 'casefold', 'center', 'count', 'encode',

'endswith' , 'expandtabs', 'find', 'format', 'format_map',

'index' , 'isalnum', 'isalpha', 'isdecimal', 'isdigit',

'isidentifier' , 'islower', 'isnumeric', 'isprintable',

'isspace' , 'istitle', 'isupper', 'join', 'ljust', 'lower',

'lstrip' , 'maketrans', 'partition', 'replace', 'rfind',

'rindex' , 'rjust', 'rpartition', 'rsplit', 'rstrip',

'split' , 'splitlines', 'startswith', 'strip', 'swapcase',

'title' , 'translate', 'upper', 'zfill']

>>> helpt(str.capitalize)

Help on method_descriptor:

capitalize(...)

 S.capitalize() -> str

 Return a capitalized version of S, i.e. make the first character

 have upper case and the rest lower case.

>>> word = 'banana'

>>> word.upper()

BANANA

>>> word = 'banana'

>>> word.find('a')

1

>>> word.find('na')

2

>>> word.find('na',3) # second argument is the index where it should start looking

4

>>> line = ' Here we go '

>>> line.strip()

'Here we go'

>>> line = 'Have a nice day'

>>> line.startswith('Have')

True

>>> line.startswith('h')

False

7.9. Parsing strings

>>> data = 'From stephen.marquard@uct.ac.za Sat Jan

>>> atpos = data.find('@')

>>> print(atpos)

21

>>> sppos = data.find(' ',atpos)

>>> print(sppos)

31

>>> host = data[atpos+1:sppos]

>>> print(ho

7.10. Format Operator

% allows to contract strings, which can be replaced with data stored in variables.

Format Type

%s String (or any object with a string representation, like numbers)

%d Integers

%g Floating point numbers

>>> camels = 42

>>> 'what is %d ?' % camels

'what is 42 ?'

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')

'In 3 years I have spotted 0.1 camels.'

7.11. Glossary

counter A variable used to count something, usually initialized to zero and then incremented.
empty string A string with no characters and length 0, represented by two quotation marks.
format operator An operator, %, that takes a format string and a tuple and generates a string that

includes the elements of the tuple formatted as specified by the format string.
format sequence A sequence of characters in a format string, like %d, that specifies how a value should

be formatted.
format string A string, used with the format operator, that contains format sequences.
flag A boolean variable used to indicate whether a condition is true or false.
invocation A statement that calls a method.
immutable The property of a sequence whose items cannot be assigned.
index An integer value used to select an item in a sequence, such as a character in a string.
item One of the values in a sequence.
method A function that is associated with an object and called using dot notation.
object Something a variable can refer to. For now, you can use “object” and “value” interchangeably.

search A pattern of traversal that stops when it finds what it is looking for.
sequence An ordered set; that is, a set of values where each value is identified by an integer index.
slice A part of a string specified by a range of indices.
traverse To iterate through the items in a sequence, performing a similar operation on each.

8. Files

8.1. Opening files modes

Mode Description

r
Opens a file for reading only. The file pointer is placed at the beginning of the file. This is the
default mode.

rb
Opens a file for reading only in binary format. The file pointer is placed at the beginning of the
file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer placed at the beginning of the file.

rb+
Opens a file for both reading and writing in binary format. The file pointer placed at the
beginning of the file.

w
Opens a file for writing only. Overwrites the file if the file exists. If the file does not exist, creates
a new file for writing.

wb
Opens a file for writing only in binary format. Overwrites the file if the file exists. If the file does
not exist, creates a new file for writing.

w+
Opens a file for both writing and reading. Overwrites the existing file if the file exists. If the file
does not exist, creates a new file for reading and writing.

wb+
Opens a file for both writing and reading in binary format. Overwrites the existing file if the file
exists. If the file does not exist, creates a new file for reading and writing.

a
Opens a file for appending. The file pointer is at the end of the file if the file exists. That is, the
file is in the append mode. If the file does not exist, it creates a new file for writing.

ab
Opens a file for appending in binary format. The file pointer is at the end of the file if the file
exists. That is, the file is in the append mode. If the file does not exist, it creates a new file for
writing.

a+
Opens a file for both appending and reading. The file pointer is at the end of the file if the file
exists. The file opens in the append mode. If the file does not exist, it creates a new file for
reading and writing.

ab+
Opens a file for both appending and reading in binary format. The file pointer is at the end of
the file if the file exists. The file opens in the append mode. If the file does not exist, it creates a
new file for reading and writing.

8.2. The file object attributes

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true otherwise.

8.3. Opening files

mbox.txt stored in the same directory as where the python is run

>>> file_handle = open('mbox.txt')

>>> print(file_handle)

<_io.TextIOWrapper name='mbox.txt' mode='r' encoding='cp1252'>

8.4. Text files and lines

>>> stuff = 'Hello\nWorld!'

>>> stuff

'Hello\nWorld!'

>>> print(stuff)

Hello

World!

>>> stuff = 'X\nY'

>>> print(stuff)

X

Y

>>> len(stuff)

3

8.5. Reading files

Counting lines

fhand = open('mbox.txt')

count = 0

for line in fhand:

 count = count + 1

print('Line Count:', count)

open does not read the entire file, it takes the same time opening any file regardless of the size of the file.

If you know the file to be small you can read the whole file at once

>>> fhand = open('mbox.txt')

>>> inp = fhand.read()

>>> print(len(inp))

94626

>>> print(len(fhand.read()))

0

8.6. Searching through a file

fhand = open('mbox.txt')

count = 0

for line in fhand:

 line = line.rstrip() # strips white space from the right side

 if line.startswith('From:')

 print(line)

fhand = open('mbox.txt')

for line in fhand:

 line = line.rstrip()

 if line.find('@uct.ac.za') == -1: continue # -1 not found

 print(line)

8.7. Writing files

>>> fout = open('output.txt', 'w')

>>> fout.write("This here's the wattle,\n")# write does not add new line automatically

24 # number of characters written

>>> fout.close() # physically writes data to the disk

If the file already exists opening it in write mode clears out the old data

Closing files is more important in writing, but can also be done with reading

8.8. Glossary

catch To prevent an exception from terminating a program using the try and except statements.
newline A special character used in files and strings to indicate the end of a line.
Pythonic A technique that works elegantly in Python. “Using try and except is the Pythonic way to

recover from missing files”.
Quality Assurance A person or team focused on insuring the overall quality of a software product. QA is

often involved in testing a product and identifying problems before the product is released.
text file A sequence of characters stored in permanent storage like a hard drive.

9. Lists

>>> numbers = [10, 20, 30, 40]

>>> words = ['hello', 'friend', '!']

>>> mix = ['spam', 2.0, 5, [10,20]]

9.1. Lists are mutable

>>> numbers = [17, 123]

>>> numbers[1] = 5

>>> print(numbers)

[17, 5]

9.2. Dims as variables

>>> array = [5, 10, 15, 20]

>>> five, ten, fift, twent = array

>>> print(five, ten, fift, twen)

5, 10, 15, 20

9.3. in operator

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']

>>> 'Edam' in cheeses

True

>>> 'Brie' in cheeses

False

9.4. Traversing a list

for cheese in cheeses:

 print(cheese)

for i in range(len(numbers)):

 numbers[i] = numbers[i] * 2

9.4.1. next() iteration

>>> g = (x ** 2 for x in range(10))

>>> print(next(g))

0

>>> print(next(g))

1

9.5. List operations

9.5.1. +

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b
>>> print(c)

[1, 2, 3, 4, 5, 6]

9.5.2. *

>>> [0] * 4

[0, 0, 0, 0]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

9.6. List slices

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3]

['b', 'c']

>>> t[:4]

['a', 'b', 'c', 'd']

>>> t[3:]

['d', 'e', 'f']

>>> t[:]

['a', 'b', 'c', 'd', 'e', 'f']

>>> t[::-1]

['f', 'e', 'd', 'c', 'b', 'a']

>>> t[1:3] = ['x', 'y']

>>> print(t)

['a', 'x', 'y', 'd', 'e', 'f']

9.7. List methods

9.7.1. append()

>>> t = ['a', 'b', 'c']

>>> t. append('d')

>>> print(t)

['a', 'b', 'c', 'd']

9.7.2. extends()

>>> t1 = ['a', 'b', 'c']

>>> t2 = ['d', 'e']

>>> t1.extend(t2)

>>> print(t1)

['a', 'b', 'c', 'd', 'e']

9.7.3. sort()

>>> t = ['d', 'c', 'e', 'b', 'a']

>>> t.sort()

>>> print(t)

['a', 'b', 'c', 'd', 'e']

9.7.4. pop()

>>> t = ['a', 'b', 'c']

>>> x = t.pop(1) # if index not provided, removes the last element

>>> print(t)

['a', 'c']

9.7.5. del

>>> t = ['a', 'b', 'c']

>>> del t[1]

>>> print(t)

['a', 'c']

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> del t[1:5]

>>> print(t)

['a', 'f']

9.7.6. remove()

>>> t = ['a', 'b', 'c']

>>> t.remove('b')

>>> print(t)

['a', 'c']

9.8. Lists and functions

>>> nums = [3, 41, 12, 9, 74, 15]

>>> print(len(nums))

6

>>> print(max(nums))

74

>>> print(min(nums))

3

>>> print(sum(nums)) # only works with numbers

154

>>> print(sum(nums)/len(nums))

25

9.9. Lists and strings

>>> s = 'spam'

>>> t = list(s)

>>> print(t)

['s', 'p', 'a', 'm']

>>> s = 'pining for the fjords'

>>> t = s.split()

>>> print(t)

['pining', 'for', 'the', 'fjords']

>>> s = 'spam-spam-spam'

>>> delimiter = '-'

>>> s.split(delimiter)

['spam', 'spam', 'spam']

>>> t = ['pining', 'for', 'the', 'fjords']

>>> delimiter = ' '

>>> delimiter.join(t)

'pining for the fjords'

9.10. Objects and values

Checking if values refer to two different objects with the same value or if they both refer to the same object

9.10.1. is - refer to the dame object, checks for Identity

>>> a = 'banana'

>>> b = 'banana'

>>> a is b

True

When creating lists you get two different objects

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a is b

False

Lists here are

Equivalent - because have the same elements
Non Identical - because they are not the same object

9.10.2. Aliasing

>>> a = [1, 2, 3]

>>> b = a

>>> b is a

True

9.11. List arguments

Lists are mutable so when it is passed into the function and gets modified there, there is no need to return.

def delete_head(t):

 del t[0]

>>> letters = ['a', 'b', 'c']

>>> delete_head(letters)

>>> print(letters)

['b', 'c']

9.11.1. Modifies the list

>>> t1 = [1, 2]

>>> t2 = t1.append(3)

>>> print(t1)

[1, 2, 3]

>>> print(t2)

None

9.11.2. Creates new list

>>> t3 = t1 +[3]

>>> print(t3)

[1, 2, 3]

>>> t2 is t3

False

9.12. Glossary

aliasing A circumstance where two or more variables refer to the same object.

delimiter A character or string used to indicate where a string should be split.
element One of the values in a list (or other sequence); also called items.
equivalent Having the same value.
index An integer value that indicates an element in a list.
identical Being the same object (which implies equivalence).
list A sequence of values.
list traversal The sequential accessing of each element in a list.
nested list A list that is an element of another list.
object Something a variable can refer to. An object has a type and a value.
reference The association between a variable and its value.

10. Dictionaries

10.1. Create

>>> eng2sp = dict() # Creaes new dictionarry with no items

>>> print(eng2sp)

{}

10.2. Add

>>> eng2sp['one'] = 'uno'

>>> print(eng2sp)

{'one': 'uno'}

10.3. Create pre-populated

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

>>> print(eng2sp)

{'one': 'uno', 'three': 'tres', 'two': 'dos'} # dictonary order is unpredictable

10.4. Look up

>>> print(eng2sp['two'])

'dos'

>>> eng2sp.get('two')

'dos'

>>> eng2sp.get('dog')

None

>>> eng2sp.get('dog', 'not in the dictionary')

'not in the dictionary'

10.5. Number of pairs

>>> len(eng2sp)

3

10.6. in check if a key is in the dictionary (does not work for value)

>>> 'one' in eng2sp

True

>>> 'uno' in eng2sp

False

10.7. Check if value is in the dictionary

>>> vals = list(eng2sp.values())

>>> 'uno' in vals

True

10.8. Looping and dictonaries

counts = { 'chuck' : 1, 'annie' : 42, 'jan': 100}

for key in counts:

 print(key, counts[key])

jan 100

chuck 1

annie 42

10.9. Glossary

dictionary A mapping from a set of keys to their corresponding values.
hashtable The algorithm used to implement Python dictionaries.
hash function A function used by a hashtable to compute the location for a key.

histogram A set of counters.
implementation A way of performing a computation.
item Another name for a key-value pair.
key An object that appears in a dictionary as the first part of a key-value pair.
key-value pair The representation of the mapping from a key to a value.
lookup A dictionary operation that takes a key and finds the corresponding value.
nested loops When there are one or more loops “inside” of another loop. The inner loop runs to

completion each time the outer loop runs once.
value An object that appears in a dictionary as the second part of a key-value pair. This is more specific

than our previous use of the word “value”.

11. Tuples
Tuples are immutable
Tuples are comparable
Tuples are hashable

>>> t = 'a', 'b', 'c', 'd', 'e'

or

>>> t = ('a', 'b', 'c', 'd', 'e')

To make a tuple with single element, include last comma

>>> t1 = ('a',)

<type 'tuple'>

>>> t1 = ('a')

<type 'str'>

Empty tuple with build-in function

>>> t = tuple()

>>> print(t)

()

>>> t = tuple('lupins')

>>> print(t)

('l', 'u', 'p', 'i', 'n', 's')

>>> print(t[0])

'l'

Can also use slice operator

>>> print(t[1:3])

('b', 'c')

11.1. Comparing Tuples

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

The comparison operators work with tuples and other sequences. Python starts by comparing the first
element from each sequence. If they are equal, it goes on to the next element, and so on, until it finds
elements that differ. Subsequent elements are not considered (even if they are really big).

Sort function works the same way. It sorts primarily by first element, but in case of a tie, it sorts by second
element and so on.

Example list

txt = 'but soft what light in yonder window breaks'

words = txt.split()

t = list()

for word in words:

 t.append((len(word), word))

t.sort(reverse=True) # Decreasing order

res = list()

for length, word in t:

 res.append(word)

print(res)

['yonder', 'window', 'breaks', 'light', 'what', 'soft', 'but', 'in']

11.2. Tuple Assignment

Python allows to have tuple on the right side of assignment

>>> m = ['have', 'fun']

>>> x, y = m # also can do (x, y) = m

>>> x

'have'

>>> y

'fun'

With this it allows us to swap two values with each other

>>> a, b = b, a

>>> addr = 'monty@python.org'

>>> uname, domain = addr.split('@')

11.3. Dictionaries and tuples

Dictionaries have a method called items that returns a list of tuples, where each tuples is a key-value pair

>>> d = {'a':10, 'b':1, 'c':22}

>>> t = list(d.items())

>>> print(t)

[('b', 1), ('a', 10), ('c', 22)]

>>> t.sort()

>>> t

[('a', 10), ('b', 1), ('c', 22)]

11.4. Multiple assignment with dictionaries

for key, val in list(d.items()):

 print(val, key)

11.5. Using tuples as keys in dictionaries

Tuples are hashable

directory[last, first] = number

11.6. Glossary

comparable A type where one value can be checked to see if it is greater than, less than, or equal to
another value of the same type. Types which are comparable can be put in a list and sorted.
data structure A collection of related values, often organized in lists, dictionaries, tuples, etc.
DSU Abbreviation of “decorate-sort-undecorate”, a pattern that involves building a list of tuples, sorting,

and extracting part of the result.
gather The operation of assembling a variable-length argument tuple.
hashable A type that has a hash function. Immutable types like integers, floats, and strings are hashable;

mutable types like lists and dictionaries are not.

scatter The operation of treating a sequence as a list of arguments.
shape (of a data structure) A summary of the type, size, and composition of a data structure.
singleton A list (or other sequence) with a single element.
tuple An immutable sequence of elements.
tuple assignment An assignment with a sequence on the right side and a tuple of variables on the left.

The right side is evaluated and then its elements are assigned to the variables on the left.

12. Regular Expressions

12.1. search()

Returns a Boolean saying if the value was found.

import re # regular expression library

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 if re.search('From:', line):

 print(line)

12.2. Special characters

Character Meaning Example

Basics

. matches anything '^F..m:'

` ` or

a The character a

ab The string ab

\ Escape character * matches

Quantifiers

* 0-or-more - (greedy) '^From:.*@'

+ 1-or-more - (greedy) '^From:.+@'

? 0-or-1 '^From:.?@'

*? match zero or more times in 'non-greedy mode'

+? match one or more times in 'non-greedy mode'

{2} Exactly 2 '^From:.
{2}@'

{2,5} Between 2 and 5 '^From:.
{2,5}@'

{2,} 2 or more '^From:.
{2,}@'

{,5} Up to 5 '^From:.
{,5}@'

Groups

(...) Capturing Group

(?P<Y>...) Capturing Group named Y

(?:...) Non-capturing Group

\Y Match the Y'th captured group

(?P=Y) Match the named group Y

(?#...) Comment

Character
Classes

[a-zA-Z0-9] One character from Alphabet or numbers

[ab-d] One character of: a, b, c, d

Character Meaning Example

[^ab-d] One character except: a, b, c, d

[\b] Backspace character

\d One digit

\D One non-digit

\s One whitespace

\S One non-whitespace

\w One word character

\W One non-word character

Assertions

^ Start of string '^From:'

\A Start of string, ignores m flag

$ End of string

\Z End of string, ignores m flag

\b
Word boundary - Matches the empty string, but only at the start or
end of a word.

\B
Non-word boundary - Matches the empty string, but not at the start
or end of a word.

(?=...) Positive lookahead

(?!...) Negative lookahead

(?<=...) Positive lookbehind

(?<!...) Negative lookbehind

`(?())` Conditional

Flag

i Ignore case

m ^ and $ match start and end of line

s . matches newline as well

x Allow spaces and comments

L Locale character classes

u Unicode character classes

(?iLmsux) Set flags within regex

Character Meaning Example

Special
Characters

\n Newline

\r Carriage return

\t Tab

\YYY Octal Character YYY

\xYY Hexadecimal character YY

Replacement

\g<0> Insert entire match

\g<Y> Insert match Y (name of number)

\Y Insert group numbered Y

For Quantifiers, default is greedy. By appending ? you make it reluctant

12.3. Extracting data using regular expressions

Use findall() to extract all sub-strings matching regex from a string

Let's look at an example of how to extract email address from text

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Return-Path: <postmaster@collab.sakaiproject.org>

for <source@collab.sakaiproject.org>;

Received: (from apache@localhost)

Author: stephen.marquard@uct.ac.za

import re

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 x = re.findall('[a-zA-Z0-9]\S+@\S+[a-zA-Z]', line)

 if len(x) > 0:

 print(x)

12.4. Combining searching and extracting

Want to find number on lines which start with X-

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

X-DSPAM-Confidence: 0.6178

X-DSPAM-Probability: 0.0000

import re

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 if re.search('^X\S*: [0-9.]+', line):

 print(line)

This will filter out lines and only leave the lines we are looking for. Now lets extract the number

Search for lines that start with 'X' followed by any

non whitespace characters and ':' followed by a space

and any number. The number can include a decimal.

Then print the number if it is greater than zero.

import re

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 x = re.findall('^X\S*: ([0-9.]+)', line)

 if len(x) > 0:

 print(x)

['0.8475']

['0.0000']

['0.6178']

['0.0000']

['0.6961']

['0.0000']

12.5. Combining searching and extracting

Lets extract the hour from this line

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re

hand = open('mbox-short.txt')

for line in hand:

 line = line.rstrip()

 x = re.findall('^From .* ([0-9][0-9]):', line)

 if len(x) > 0: print(x)

['09']

['18']

['16']

['15']

12.6. Glossary

brittle code Code that works when the input data is in a particular format but is prone to breakage if
there is some deviation from the correct format. We call this “brittle code” because it is easily broken.
greedy matching The notion that the + and * characters in a regular expression expand outward to

match the largest possible string.
grep A command available in most Unix systems that searches through text files looking for lines that

match regular expressions. The command name stands for “Generalized Regular Expression Parser”.
regular expression A language for expressing more complex search strings. A regular expression may

contain special characters that indicate that a search only matches at the beginning or end of a line or
many other similar capabilities.
wild card A special character that matches any character. In regular expressions
the wild-card character

is the period.

13. Networked Programs

13.1. The world's simplest web browser

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mysock.connect(('data.pr4e.org', 80))

cmd = 'GET http://data.pr4e.org/romeo.txt HTTP/1.0\r\n\r\n'.encode() # converts to byte object

\r\n signifies EOF

mysock.send(cmd)

while True:

 data = mysock.recv(512)

 if len(data) < 1:

 break

 print(data.decode(), end='')# decode from byte to string

mysock.close()

Answer:

HTTP/1.1 200 OK

Date: Wed, 11 Apr 2018 18:52:55 GMT

Server: Apache/2.4.7 (Ubuntu)

Last-Modified: Sat, 13 May 2017 11:22:22 GMT

ETag: "a7-54f6609245537"

Accept-Ranges: bytes

Content-Length: 167

Cache-Control: max-age=0, no-cache, no-store, must-revalidate

Pragma: no-cache

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Connection: close

Content-Type: text/plain

But soft what light through yonder window breaks

It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

>>> b'Hello world'

b'Hello world'

>>> 'Hello world'.encode()

b'Hello world'

13.2. Retrieving an image over HTTP

import socket

import time

HOST = 'data.pr4e.org'

PORT = 80

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mysock.connect((HOST, PORT))

mysock.sendall(b'GET http://data.pr4e.org/cover3.jpg HTTP/1.0\r\n\r\n')

count = 0

picture = b""

while True:

 data = mysock.recv(5120)

 if len(data) < 1: break

 #time.sleep(0.25)

 count = count + len(data)

 print(len(data), count)

 picture = picture + data

mysock.close()

Look for the end of the header (2 CRLF)

pos = picture.find(b"\r\n\r\n")

print('Header length', pos)

print(picture[:pos].decode())

Skip past the header and save the picture data

picture = picture[pos+4:]

fhand = open("stuff.jpg", "wb")

fhand.write(picture)

fhand.close()

$ python urljpeg.py

 5120 5120

 5120 10240

 4240 14480

 5120 19600

 ...

 5120 214000

 3200 217200

 5120 222320

 5120 227440

 3167 230607

 Header length 393

 HTTP/1.1 200 OK

 Date: Wed, 11 Apr 2018 18:54:09 GMT

 Server: Apache/2.4.7 (Ubuntu)

 Last-Modified: Mon, 15 May 2017 12:27:40 GMT

 ETag: "38342-54f8f2e5b6277"

 Accept-Ranges: bytes

 Content-Length: 230210

 Vary: Accept-Encoding

 Cache-Control: max-age=0, no-cache, no-store, must-revalidate

 Pragma: no-cache

 Expires: Wed, 11 Jan 1984 05:00:00 GMT

 Connection: close

 Content-Type: image/jpeg

13.3. Retrieving web pages with urllib

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

for line in fhand:

 print(line.decode().strip())

Example of retrieving connects of the file and making frequency analysis.

import urllib.request, urllib.parse, urllib.error

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

counts = dict()

for line in fhand:

 words = line.decode().split()

 for word in words:

 counts[word] = counts.get(word, 0) + 1

print(counts)

13.4. Reading binary files using urllib

Sometimes you want to retrieve a non-text file, such as image or video file

import urllib.request, urllib.parse, urllib.error

img = urllib.request.urlopen('http://data.pr4e.org/cover3.jpg').read()# read entire file into a
string value

fhand = open('cover3.jpg', 'wb')

fhand.write(img)# then write inforamtion into a local file

fhand.close()

In order to avoid running out of memory, we retrieve the data in blocks

import urllib.request, urllib.parse, urllib.error

img = urllib.request.urlopen('http://data.pr4e.org/cover3.jpg')

fhand = open('cover3.jpg', 'wb')

size = 0

while True:

 info = img.read(100000) # reading 100,000 characeters at a time

 if len(info) < 1: break

 size = size + len(info)

 fhand.write(info)

print(size, 'characters copied.')

fhand.close()

13.5. Parsing HTML and scraping the web

One of the main uses for urllib capability in Python is to scrape the web.

Web scraping is when we write a program that pretends to be a web browser and
retrieves pages, then
examines the data in those pages looking for patterns.

13.6. Parsing HTML using regular expressions

<h1>The First Page</h1>

<p>

If you like, you can switch to the

Second Page.

</p>

14. Using Web Services

15. Object-oriented programming

16. Using Databases and SQL

17. Visualising data

18. Reference
Python For Everybody: Exploring Data in Python3

